
Understanding ETL and ETL mapping to power
the Gen3 Exploration Page

Gen3 Community Forum
September 3, 2025

The Agenda

● Data submission overview
● Gen3 ETL (Tube)

○ Data model, ETL mapping, and searching for data – all connected

○ How Tube creates ElasticSeach indices for Guppy to use

○ Review of demonstration data model

○ ETL mapping types and subtypes (with examples)

○ Troubleshooting Gen3 ETL

Overall data flow in a Gen3 data commons

Data Model, ETL Mapping, and Data Search

Structure your ETL mapping (and your
data model) based on what you will want

to search for on the Exploration page

Exploration Page

Data Model

Exploration page
results are

controlled by what
Guppy can query.

Guppy queries are
limited by the data

that is in ES.The data in ES is
governed by the

ETL mapping and
the data in the
Sheepdog DB.

The data in the
Sheepdog DB is
structured as a

result of the
data model.

Data Model, ETL Mapping, and Data Search

Each tab requires a separate index created in ETL

What is Tube? Why use it?

What is Tube?
● Tube is the microservice that travels across the

graph to find and grab data in a PostgreSQL DB,
then transforms it into ElasticSearch (ES)
indexed documents (indices)

Why use Tube (or any ETL)?
● The indices in ES allow the microservice Guppy

to quickly and efficiently query data.

● Used by the front-end and other Gen3 services.

https://github.com/uc-cdis/tube

ETL - What does Tube do?

Tube controls what data is gathered in the ES
indices by configuration through the
etlMapping.yaml file, which tells Tube which
data tables and fields to ETL from Sheepdog
into ElasticSearch indices.

Tube
etlMapping.yaml

Tube Infrastructure and Mechanics

Tube (simplified)

● uses SQOOP to extract data
from the Sheepdog PostgreSQL
DB

● SQOOP temporarily dumps it
into Hadoop

● Apache Spark then reads data
from Hadoop and transforms it
according to ETL config,
creating indices in
ElasticSearch.

https://github.com/apache/sqoop
https://spark.apache.org/

ETL - Mapping Syntax Base Syntax

● Yaml based schema

● “–” is the start of a new concept and indentation preserves that concept

● Multiple props can be combined for flexibility in index creation

ETL - Mapping Syntax: Mappings

Mappings
For every mapping:
● You must specify the name the index will have in ES

(name)
● You must specify the name that Guppy will use to

query the index (doc_type)
● You must specify the type of mapping used for the

index (type)
For type: aggregator

Must also indicate root node name in the DB
For type: collector

Indicate node category to collect properties from

ETL - Mapping Syntax: Props

Properties (props)
● Props are all the fields that are expected to be in the

final ElasticSearch index

For every property:

● You must specify the name the property will have in
the ES index (name)

● If the prop name is different in the graph, you must
also specify the name of the property in the source
DB (src)

● You can use value_mappings to map new value
names to the existing values in the DB

ETL - Mapping Functions

● fn: count - counting how many
nodes have values for that prop
per case/root

● fn: max - reporting the max value
among records for that property
for a case/root

● fn: min - reporting the min value
among records for that property
for a case/root

● fn: sum - reporting the sum of
values for records for that property

● fn: list - the full set of values
(including any duplicates) for
records for that property

● fn: set - reporting all the unique
values for records for that property

ETL mapping supports 6 functions (fn):

(you can use these in either
aggregators or collectors)

ETL - Mapping Syntax: Mapping Types

Two types of mapping:
Aggregation (creates an aggregator)

Traveling from a single root node, aggregators gather data from properties on connected
nodes into a single index in ES

Example: a case aggregator that collects selected clinical data properties from the case node
through the clinical nodes on a data model

Injection (creates a collector)

Collectors travel across multiple nodes of the same node category to gather data from shared
properties on the nodes, and “inject” a parent node's ID into downstream nodes for faster
joining

Example: a data file collector that collects data from properties on many different file nodes

ETL - Aggregation Mapping Subtypes

Aggregation - travels from root to multiple connected nodes

General approaches for creating an aggregator index:

With a “Root” node in mind:

● flatten_props:
Get props from lower nodes

● parent_props:
Get props from upper nodes

● nested_props:
Get props from multiple lower nodes

● aggregated_props:
Add statistics into indices

● joining_props:
Join properties between indices

ETL - Collector Mapping Syntax

Injection - collects props from nodes of the same category, injecting parent node ID into
lower nodes

General approaches for creating a collector index:

With a “category” of node in mind:

● injecting_props:
Properties from parent nodes are injected into an index made up of lower
nodes of a specified category

ETL - Mappings Explanation and Examples

The following slides contain examples of each of the mappings subtypes

● For each mapping, there is a selection of the data model

● Example Mapping

● Example Index

For our purposes, indices will be displayed as tables where simple enough to do so, and
as JSON where more complex.

ETL - Example Data Model

Program Project

Events

Subject

Study

Demographics

Data File -
Image

SampleTreatment

Data File -
Assay

admin

subject

data_file

Node Type

ETL - Creating a Mapping - Flatten Props (one-to-one)

Subject
● submitter_id
● studies.submitter_id

Demographics
● submitter_id
● age
● race
● subjects.submitter_id

Subject.submitter_id demographics.age demographics.race
sub_123 18 Black or African American
sub_456 89 Asian

Example Index:

Program Project

Events

Subject

Study

Demographics

Data File -
Image

SampleTreatment

Data File -
Assay

 Flatten_props: Get props from lower nodes

ETL - Creating a Mapping - Flatten Props (many-to-*)

Subject
● submitter_id
● studies.submitter_id

Events
● submitter_id
● date
● type
● subjects.submitter_id

Subject.submitter_id date type
sub_123 03/20/1986 birth
sub_123 03/20/2009 hospitalization
sub_456 07/26/2025 hospitalization
sub_456 08/26/2025 death

Example Index:

Program Project

Events

Subject

Study

Demographics

Data File -
Image

SampleTreatment

Data File -
Assay

 Flatten_props: Get props from lower nodes

*Only returns the most
recent date
(descending order)

ETL - Creating a Mapping - Parent Props

Study
● submitter_id
● data_batch
● studies.submitter_id

Subject
● submitter_id
● studies.submitter_id

Subject.submitter_id data_batch
sub_123 NIH_08262025
sub_456 NSRR_08272025

Example Index:

Program Project

Events

Subject

Study

Demographics

Data File -
Image

SampleTreatment

Data File -
Assay

Parent_props: Get props from upper nodes

ETL - Creating a Mapping - Nested Props

Subject
● submitter_id
● studies.submitter_id

Sample
● Submitter_id
● sample_id
● collection_date
● sample_type
● subjects.submitter_id

Example Index:
Subject: [
 {
 "submitter_id": "sub_123",
 "samples": [
 {"submitter_id": "sample_id_123",
 "collection_date": "08/26/2024",
 "sample_type": "assay",
 "data_files": [
 {"file_size": "100 MB",
 "md5sum": "e33ngkdf0a0dm34fg"},
 {"file_size": "105 MB",
 "md5sum": "9fad9fj3jfajdfgiafdg9"}
]
 },
 {"submitter_id": "sample_id_456",
 "collection_date": "04/28/2025",
 "sample_type": "imaging",
 "data_files": [
 {"file_size": "1.53 GB",
 "md5sum": "13hgs9fdg4jqof"},
 {"file_size": "2.63 MB",
 "md5sum": "31612kjfga90refj"}
]
 }
]
 },
 {
 "submitter_id": "sub_456",
 "samples": [
 {"submitter_id": "sample_id_789",
 "collection_date": "05/28/2023",
 "sample_type": "assay",
 "data_files": [
 {"file_size": "109 MB",
 "md5sum": "wvtqwsertwsn4w5"},
 {"file_size": "116 MB",
 "md5sum": "sfghsfvs5wg543r"}
]
 },
 {"submitter_id": "sample_id_101",
 "collection_date": "04/11/2022",
 "sample_type": "imaging",
 "data_files": [
 {"file_size": "1.22 GB",

Data File - Image
● submitter_id
● file_size
● md5sum
● Samples.submitter_id

Nested
Indices

Program Project

Events

Subject

Study

Demographics

Data File -
Image

SampleTreatment

Data File -
Assay

Nested_props: Get props from multiple lower nodes

ETL - Mapping - Nested Props (skipping nodes)

Subject
● submitter_id
● studies.submitter_id

Sample
● Submitter_id
● sample_id
● collection_date
● sample_type
● subjects.submitter_id

Data File - Image
● submitter_id
● file_size
● md5sum
● Samples.submitter_id

Example Index:
Subject: [
 {
 "submitter_id": "sub_123",
 {"subject_samples": [
 {"file_size": "100 MB",
 "md5sum": "e33ngkdf0a0dm34fg"},
 {"file_size": "105 MB",
 "md5sum": "9fad9fj3jfajdfgiafdg9"}
]
 },
 {"subject_samples": [
 {"file_size": "1.53 GB",
 "md5sum": "13hgs9fdg4jqof"},
 {"file_size": "2.63 MB",
 "md5sum": "31612kjfga90refj"}
]
 }
 },
 {
 "submitter_id": "sub_456",
 {"subject_samples": [
 {"file_size": "109 MB",
 "md5sum": "wvtqwsertwsn4w5"},
 {"file_size": "116 MB",
 "md5sum": "sfghsfvs5wg543r"}
]
 },
 {"subject_samples": [
 {"file_size": "1.22 GB",
 "md5sum": "afshgw4twrtw45q"},
 {"file_size": "3.11 MB",
 "md5sum": "arfg45gw5ww4rfrw4"}
]
 }
 }
]

Nested
Indices

Program Project

Events

Subject

Study

Demographics

Data File -
Image

SampleTreatment

Data File -
Assay

Nested_props: Get props from multiple lower nodes

ETL - Mapping - Aggregated Props

Subject
● submitter_id
● studies.submitter_id

Sample
● Submitter_id
● sample_id
● collection_date
● sample_type
● subjects.submitter_id

Subject.submitter_id collection_date sample_type sample_count

sub_123 08/26/2025 assay 3

08/26/2025 imaging 3

09/01/2025 assay 3

sub_456 07/26/2024 imaging 3

08/23/2025 imaging 3

08/23/2025 assay 3

Example Index:

Program Project

Events

Subject

Study

Demographics

Data File -
Image

SampleTreatment

Data File -
Assay

Aggregated_props: Add statistics into indices

ETL - Mapping - Injection

Example Index:
Data_files_image.submitter_id _subject_id

image_123 subject_123

image_234 subject_123

image_345 subject_123

image_456 subject_345

image_567 subject_345

image_678 subject_345

Program Project

Events

Subject

Study

Demographics

Data File -
Image

SampleTreatment

Data File -
Assay

Data_files_assay.submitter_id _subject_id

assay_123 subject_567

assay_234 subject_567

assay_345 subject_567

assay_456 subject_789

assay_567 subject_789

assay_678 subject_789

Data File - Assay
● submitter_id
● project_id

Data File - Image
● submitter_id
● project_id

Injecting_props: Objects from nodes are injected into an index made up of nodes from that category

Subject
● submitter_id
● studies.submitter_id

ETL - Mapping - Collector default functions

● fn: set - reporting all the unique values for records for that property

In collectors, the default function is set

ETL - Mapping - Joining Props (Combination)

events.submitter_id study_id data_file.submitter_id
event_1 study_1 wb54yt4byw5b3

event_2 study_1 sasdffcvsfdgsrg

event_3 study_1 gd4qbg5gw545s

event_1 study_2 ds43w5bgb45try

event_2 study_2 aq4bqbtqnbq4wt4

event_3 study_2 45q4g5w5rgw545

Example Index:
Events

● submitter_id
● date
● type
● subjects.submitter_id

Injected index Joining indices

Joining_props: Join properties between indices

Study
● Submitter_id
● Data_batch

Program Project

Events

Subject

Study

Demographics

Data File -
Image

SampleTreatment

Data File -
Assay

Data File - Assay
● submitter_id
● project_id

Data File - Image
● submitter_id
● project_id

Data File -
Assay

ETL - Mapping - Putting it all together

Goal: Create a File Manifest
We want a search to be able to capture
what data files are present for studies,
subjects and demographics
Steps:
1. Create an Aggregator index

connecting Subject with
Demographics and Sample
(nested)

2. Create an collector (injected) index
with the Data File nodes

3. Join the file index to the
aggregator to build a file manifest*

1 3

2

Program Project

Events

Subject

Study

Demographics

Data File -
Image

SampleTreatment

* File manifests must have (at least) the object_id of the
files to be useful. So, remember to add object_id to
the joining_props of the aggregator indices

Data File -
Assay

ETL - Mapping - Putting it all together - Subject File Manifest

1 3

2

Program Project

Events

Subject

Study

Demographics

Data File -
Image

SampleTreatment

1.

2.

3.

ETL - Mapping - Putting it all together (Part 2)

We showed you how the MIDRC exploration page has tabs created from
indices generated by ETL

Putting it all together (Part 2)

Here is an abridged version of the
midrc_case index ETL mapping.
● Called midrc_case in ES
● Called case in Guppy
● This is an aggregator with the

case node as a root.
This index includes:
● Props
● Aggregated_props
● Parent_props
● Nested_props
● Joining_props

ETL - Mapping - Putting it all together (Part 2)

Sneak peek at how ETL mapping
connects to Exploration page

Questions?

Questions? (before our ETL Troubleshooting part of the presentation)

Reminders:
● Slides and the recording will be available as a resource

● Code snippets of examples shown here are available on GitHub

● Gen3-gitops has the ETL mappings for all Gen3 commons supported by CTDS

○ At the end of this presentation, there is a slide that specifically links to ETL
mapping, Guppy values.yaml, explorerConfig, guppyConfig, and exploration
page for 2 different open-access Gen3 data commons

● Additional documentation is coming soon

https://github.com/uc-cdis/gen3.org/tree/master/content/community/events/Gen3%20Forum%20September%202025%20-%20ETL
https://github.com/uc-cdis/gen3-gitops

Troubleshooting your ETL*

* And processes happening between your ETL and
the data showing up on your Exploration page

Troubleshooting Part 1: Sanity Check

● Did you deploy the new ETL mapping?

● Did you make sure to run the ETL after deploying the new ETL mapping?

● Did you re-roll Guppy after your ETL run?

● If so – were there any Guppy errors at startup? Check both your Guppy and
Portal/FEF logs to see if there are any errors (eg, new portal pod may not be
deployed because of a simple JSON parsing error).

● Did you update the Portal/FEF explorer config to make sure it is aligned with any
new data in ES and accessed by Guppy?

Special thanks to Joshua Harris from Australian BioCommons for developing a
substantial part of this troubleshooting guide

Troubleshooting Part 2: Check ETL and ES

Check the ETL log (assuming you are using Tube for ETL)
● Will explicitly say that the ETL succeeded, even if there are lots of other warnings

● To check the ETL log:

kubectl logs <etl pod name> -c tube -f

Special thanks to Joshua Harris from Australian BioCommons for developing a
substantial part of this troubleshooting guide

Troubleshooting Part 2: Check ETL and ES (conʼt)

Log on to the ES pod and check the data there after running ETL
● To log onto your ES pod:

kubectl exec -it <es proxy pod> -- sh
● To check what indices are present in your ES:

○ In two terminals, do the following:
■ port forward ES service:

kubectl port-forward svc/elasticsearch 9200:9200
■ See data in all indices in ES:

curl -X GET http://localhost:9200/_cat/indices
■ See data in a specific index:

curl -X GET http://localhost:9200/<index name>

Special thanks to Joshua Harris from Australian BioCommons for developing a
substantial part of this troubleshooting guide

Troubleshooting Part 2: Check ETL and ES (conʼt)

If your data is in ES:
If your data is in ES - you know ETL is working and data is being created in ES

If your data is NOT in ES:
Your ETL has a problem. The ETL log should provide a clue about whatʼs wrong - you
can tell from the logging before it failed where in the ETL mapping it had the failure.

● Examine your ETL mapping; check if there's anything that could be a typo or an
incorrect prop name or path.

● Look at your data in Sheepdog. Particularly look for “special characters” (backslash
and non-ASCII characters), especially if itʼs a particular data column missing.

● Confirm with Peregrine queries that the path to the prop you included in the mapping
is a valid path.

Troubleshooting Part 3: Check Guppy

Check the data can be queried by Guppy - Frontend
Once you know the data is in ES - restart Guppy, and check that Guppy can pull data from
ES. This will help you determine whether the data in ES is queryable by Guppy from the
/graphql API.

● You can work from the query page on the front end and submit your queries
there.

Special thanks to Joshua Harris from Australian BioCommons for developing a
substantial part of this troubleshooting guide

Troubleshooting Part 3: Check Guppy (conʼt)

View the Guppy Schema - Frontend
Looking at the Guppy schema could help you see misalignments between ETL/ES and
Guppy configuration. There are 2 ways you can view the Guppy schema from the frontend.

● Through Docs: On the Query page, click "Docs" on the upper right side of the
graphiQL interface, then click "query" to view the indices available. Click on an
index to view the fields available for each index.

Troubleshooting Part 3: Check Guppy (conʼt)

View the Guppy Schema - Frontend
● Through Query page: You can also get the guppy schema using a "mapping"

guppy query on the Query page (flat model) with this query :
{ _mapping { <guppy_index> }}

https://www.google.com/url?q=https://github.com/uc-cdis/PX-US-KB/blob/7995b640c1911c90a6ffe923ce4a9fbb3ba1961c/Gen3/guppy/guppy_queries.py%23L235&sa=D&source=editors&ust=1756500065005999&usg=AOvVaw1u48an27tza_fI9R86yjuY
https://www.google.com/url?q=https://github.com/uc-cdis/PX-US-KB/blob/7995b640c1911c90a6ffe923ce4a9fbb3ba1961c/Gen3/guppy/guppy_queries.py%23L235&sa=D&source=editors&ust=1756500065005999&usg=AOvVaw1u48an27tza_fI9R86yjuY

Troubleshooting Part 3: Check Guppy (conʼt)

Check the data can be queried by Guppy (Backend)
● To log onto your Guppy pod:

kubectl exec -it <guppy pod> -- sh
● Use curl to create a graphql query. For example, here is a sample Guppy

query (h/t Joshua Harris)

Special thanks to Joshua Harris from Australian BioCommons for developing a
substantial part of this troubleshooting guide

Troubleshooting Part 3: Check Guppy (conʼt)

If the data cannot be queried by Guppy:
● Guppy logs should be helpful here.

● Check your Guppy config. Make sure the index names (type) in the Guppy config
match up, with no typos, to the doc_type fields in the ETL mapping config.
Check the JSON structure for problems. (Remember to re-roll Guppy after any
config changes before testing if it fixed the problem).

● Check your Guppy config for appropriate tier_access_level

Special thanks to Joshua Harris from Australian BioCommons for developing a
substantial part of this troubleshooting guide

Troubleshooting Part 4: Check Front End

Check the front end
1. Go to your Exploration page and then open

Developer Tools

2. Click on the Network tab

3. On the Exploration page, select the filter of
interest.

4. In the dev tools window, you should see
/graphql API calls appear in the list. Look at
the status - 200 indicates successful call,
anything else indicates trouble.

5. Click on one of the graphql calls

Troubleshooting Part 4: Check Front End (conʼt)

Look at the index the query is calling
5. Click on the Payload tab (can also click “View Source” - see box below)

6. Now, you can see the query that is being used. Check the index and make sure
itʼs what you expect it to be.

7. Check the other graphql queries, as well.

Special thanks to Joshua Harris from Australian BioCommons for developing a
substantial skeleton for this troubleshooting guide

“View source” will let you see/copy the
exact query text being sent to Guppy. You
use this to troubleshoot by using the Gen3
SDK to send that in a Gen3Query function
(graphql_query()).

Troubleshooting: Final thoughts

Look at CTDS open-source examples
Gen3-gitops is open access now. When in doubt, look through the etlConfig
sections in the values.yamlʼs for any commons run by CTDS.

MIDRC
MIDRC ETL mapping
MIDRC Guppy indices
MIDRC Explorer config
MIDRC Guppy config
MIDRC Exploration page

Gen3 Data Hub
G3DH ETL mapping
G3DH Guppy indices
G3DH Explorer config
G3DH Guppy config
G3DH Exploration page

https://github.com/uc-cdis/gen3-gitops/tree/master
https://github.com/uc-cdis/gen3-gitops/blob/abddc4bab9ca61317515f1d716326d1a37134cbf/midrcprod/data.midrc.org/values/values.yaml#L59
https://github.com/uc-cdis/gen3-gitops/blob/abddc4bab9ca61317515f1d716326d1a37134cbf/midrcprod/data.midrc.org/values/values.yaml#L538-L548
https://github.com/uc-cdis/gen3-gitops/blob/d3459a6e4a64f85b6820889c54f6d45cb3b2ca89/midrcprod/data.midrc.org/values/values.yaml#L1422
https://github.com/uc-cdis/gen3-gitops/blob/d3459a6e4a64f85b6820889c54f6d45cb3b2ca89/midrcprod/data.midrc.org/values/values.yaml#L1631
https://data.midrc.org/explorer
https://github.com/uc-cdis/gen3-gitops/blob/abddc4bab9ca61317515f1d716326d1a37134cbf/unfunded/gen3.datacommons.io/values/etl.yaml#L12
https://github.com/uc-cdis/gen3-gitops/blob/abddc4bab9ca61317515f1d716326d1a37134cbf/unfunded/gen3.datacommons.io/values/guppy.yaml#L12
https://github.com/uc-cdis/gen3-gitops/blob/abddc4bab9ca61317515f1d716326d1a37134cbf/unfunded/gen3.datacommons.io/values/portal.yaml#L388
https://github.com/uc-cdis/gen3-gitops/blob/abddc4bab9ca61317515f1d716326d1a37134cbf/unfunded/gen3.datacommons.io/values/portal.yaml#L435
https://gen3.datacommons.io/explorer

Q & A

Acknowledgements

● Speakers
○ Michael Fitzsimons - Center for Translational Data Science, University of Chicago
○ Dan Biber - Center for Translational Data Science, University of Chicago
○ Sara Volk de Garcia - Center for Translational Data Science, University of Chicago

● Gen3 Forum Steering Committee
○ Robert Grossman - Center for Translational Data Science, University of Chicago
○ Steven Manos - Australian BioCommons
○ Claire Rye - New Zealand eScience Infrastructure
○ Plamen Martinov - Open Commons Consortium
○ Michael Fitzsimons - Center for Translational Data Science, University of Chicago

Hadoop
(Spark cluster)

Architecture of ETL

Postgresql ES
SQOOP

Avro reader

mem-writer

es-writer

dictionary etl-mapping

Spark
client

Tube

