GEN

DATA COMMONS

Understanding ETL and ETL mapping to power
the Gen3 Exploration Page

Gen3 Community Forum
September 3, 2025

_ THE UNIVERSITY OF CHICAGO (N .
Jij] SENTER FOR \2¢$/ éunghOn e
TRANSLATIONAL .
\ald iocommons New Zealand eScience
DATA SCIENCE nfrastructure

OHSU

The Agenda GEN

DATA COMMONS

e Data submission overview
e Gen3ETL (Tube)

o Data model, ETL mapping, and searching for data - all connected
o How Tube creates ElasticSeach indices for Guppy to use

o Review of demonstration data model

o ETL mapping types and subtypes (with examples)

o Troubleshooting Gen3 ETL

Overall data flow in a Gen3 data commons

API
requests via
Peregrine
Gen3 Operator
(Y Datal O INt GrAGH Gen3 User
Data Treatment ata Ingestion into Grap
Befme boa Worel 'L TSV } database via Sheepdog

/? Cleaning
I~

DATA COMMONS

API
requests via
Guppy

|

PostgreSQL
Database

.| Diagnosis]

S]
L A
® ©

IDemographic
"l Tsv

O

Gen3 Operator

Index Data Files
Clinical Experimental Variant
Electronic @

Image
Health a

e
L J \Variang
Records all =
L Data Contributor [© SJ

API requests via IndexD

Gen3 User

Gen3 User

ETL into Elasticsearch
database via Tube

= Elasticsearch
PostgreSQL Elasticsearch Indices
Database Indices

Configure Frontend

Exploration Page

Diagram key

- ® Gen3 Operator
Gen3 User - P
i Buiid Sohoris Data Contributor
—— Find Files ® yser/Researcher

Download data
Export to Workspace

Data Model, ETL Mapping, and Data Search GEN

DATA COMMONS

&Data Model Structure your ETL mapping (and your
phe datain the ‘ data model) based on what you will want

to search for on the Exploration page

Sheepdog DB is
structured as a
result of the

data model. |

PostgreSQL

ElasticSearch| limited by the data
The datain ESig 'ndices thatisin ES.

(not all data)

Database
(source of truth)

governed by the

4 ETL mapping and 4
SQL query the datainthe, | i search query Exploration page Exploration Page
T slower Sheepdog DB. faster results are Gc_@

controlled by what

Guppy can query.
Peregrine Guppy L —
Query Service Query Service =z

Data Model, ETL Mapping, and Data Search GEN

DATA COMMONS

Each tab requires a separate index created in ETL

- g
& MIDRC
MEDICAL IMAGING AND DATA RESOURCE _ / / / / Exploration
. . - . @ Explorer Fili
Cases Annotations Measurements Imaging Studies Data Files

Filters Login to download table E F3 Login to download file manifest for cases (1.07m) ¥

Annotations

Procedures Conditions

Cases

84,016

COVID Tests Medications
Demographics Imaging Studies

Collapse all

Showing 1 - 20 of 84,016 cases Show Empty Columns
v Case D

What is Tube? Why use it? GEN

DATA COMMONS

& What is Tube?
 » e Tubeisthe microservice that travels across the

:The database isarelational_ _ graph to flnd and M In a POStgreSQL DB;
y prcaslmET Ol i S ey then transforms it into ElasticSearch (ES)
indexed documents (indices)

PostgreSQL

ElasticSearch
Database ETL: flatten some Indices
(source of truth)ll of the graph data (not all data) Why use Tu be (or a ny ETL) ?

} 4
SQL query ElasticSaarch query e Theindicesin ES allow the microservice Guppy
T slower faster

to quickly and efficiently query data.

:: :: e Used by the front-end and other Gen3 services.
Peregrine Guppy
Query Service Query Service

https://github.com/uc-cdis/tube

ETL - What does Tube do? GEN

DATA COMMONS

r
I

I
, The database is a relational
1 representation of the data dictionary

. Tube controls what data is gathered in the ES
Tube indices by configuration through the
PostgreSQ lasticSearch etiMapping.yaml file, which tells Tube which
Database @ ETL: flatten some Indices)
(source of truthfl of the graph data [(not all data) data tables and fields to ETL from Sheepdog

A \ into ElasticSearch indices.

etlMapping.yaml

SQL query ElasticSearch query
slower faster

Peregrine Guppy
Query Service Query Service

Tube Infrastructure and Mechanics GEN

DATA COMMONS

Tube (simplified)

e uses SQOOP to extract data
from the Sheepdog PostgreSQL

dictionary etl-mapping

ey

Postgresql

SQOOP

Spark — DB
client .
e : e SQOOP temporarily dumps it
| into Hadoop

e Apache Spark then reads data
from Hadoop and transforms it
according to ETL config,
creating indices in
ElasticSearch.

https://github.com/apache/sqoop
https://spark.apache.org/

ETL - Mapping Syntax Base Syntax GEN

DATA COMMONS

: my-data-commons_subject
doc_type: subject

type: aggregator <or> collector
root: <node in the graph>

props:

- name: <property from node>
‘op type from root

<additional mapping type>:

- <attributes of mapping>

e Yaml based schema
e “—’isthe start of a new concept and indentation preserves that concept

e Multiple props can be combined for flexibility in index creation

ETL - Mapping Syntax: Mappings

GEN

DATA COMMONS

Mappings
For every mapping:
e You must specify the name the index will have in ES
(name)
e You must specify the name that Guppy will use to
query the index (doc_type)
e You must specify the type of mapping used for the
index (type)
For type: aggregator
Must also indicate root node name in the DB
For type: collector
Indicate node category to collect properties from

: this_is_the_study_index
doc_type: study
type: aggregator
root: study

name: this_is_a_file_index

doc_type: file
type: collector
category: data_file

ETL - Mapping Syntax: Props GEN

DATA COMMONS

Properties (props)

e Props are all the fields that are expected to be in the
final ElasticSearch index

For every property: props:
- name: participant_gender
e You must specify the name the property will have in src: gender
the ES index (name) value_mappings:
e Ifthe prop name is different in the graph, you must - T: Female
also specify the name of the property in the source s Etate
DB (src)

e Youcanusevalue_mappings tomap new value
names to the existing values in the DB

ETL - Mapping Functions

GEN

ETL mapping supports 6 functions (fn):

fn: count - counting how many
nodes have values for that prop
per case/root

fn: max - reporting the max value
among records for that property
for a case/root

fn: min - reporting the min value
among records for that property
for a case/root

DATA COMMONS

fn: sum - reporting the sum of
values for records for that property
fn: list - the full set of values
(including any duplicates) for
records for that property

fn: set - reporting all the unique
values for records for that property

(you can use these in either
aggregators or collectors)

ETL - Mapping Syntax: Mapping Types GEN

DATA COMMONS

Two types of mapping:

Aggregation (creates an aggregator)

Traveling from a single root node, aggregators gather data from properties on connected
nodes into a single index in ES

Example: a case aggregator that collects selected clinical data properties from the case node
through the clinical nodes on a data model

Injection (creates a collector)

Collectors travel across multiple nodes of the same node category to gather data from shared

properties on the nodes, and “inject” a parent node's ID into downstream nodes for faster
joining

Example: a data file collector that collects data from properties on many different file nodes

ETL - Aggregation Mapping Subtypes GEN

DATA COMMONS

Aggregation - travels from root to multiple connected nodes
General approaches for creating an aggregator index:

With a “Root” node in mind:

o flatten_props: e aggregated_props:
Get props from lower nodes Add statistics into indices
e parent_props: e joining_props:
Get props from upper nodes Join properties between indices

e nested_props:
Get props from multiple lower nodes

ETL - Collector Mapping Syntax GEN

DATA COMMONS

Injection - collects props from nodes of the same category, injecting parent node ID into
lower nodes

General approaches for creating a collector index:

With a “category” of node in mind:

e injecting_props:
Properties from parent nodes are injected into an index made up of lower
nodes of a specified category

ETL - Mappings Explanation and Examples GEN

DATA COMMONS

The following slides contain examples of each of the mappings subtypes
e Foreach mapping, thereis a selection of the data model
e Example Mapping

e Example Index

For our purposes, indices will be displayed as tables where simple enough to do so, and
as JSON where more complex.

ETL - Example Data Model GEN

DATA COMMONS

Program 1 Project
Node Type \

Study
admin
subject Subject
data_ﬁ[e W
Treatment Events Demographics Sample
Data File - Data File -

Image Assay

ETL - Creating a Mapping - Flatten Props (one-to-one) GEN

Subject

® submitter_id
e studies.submitter_id

Demographics
o submitter_id
o

o race
o subjects.submitter_id

Flatten_props: Get props from lower nodes

DATA COMMONS

simple_flatten
pe: subject
aggregator
subject

submitter_id

subject_demographics
demographics

Example Index:

Subject.submitter_id | demographics.age demographics.race
sub_123 18 Black or African American

sub_456 89 Asian

ETL - Creating a Mapping - Flatten Props (many-to-*) GEN

DATA COMMONS

Program —— Project \

Study

I
! type: aggregator

Subject

r subject
///%\\\ . y
: subject_events
: events
Subject props:
e iy
’ - - name: ate
: vpa *Only returns the most
sorted_by: date, desc recent date
(descending order)
Example Index:
Events . . .
g Subject.submitter_id date type
stb—123 03/20/4986 birth
sub_123 03/20/2009 hospitalization
sub_456 08/26/2025 death

Flatten_props: Get props from lower nodes

ETL - Creating a Mapping - Parent Props GEN

DATA COMMONS

Program —— Project
S;y ame: my-data-commons_subject
doc_type: subject
subject : aggregator
subject

///A\\\ ame: submitter_id

g=il B parent_props:
21 subject_study
Study ath: study

® submitter_id
e data_batch
® studies.submitter_id

: data_batch

Example Index:

Subject Subject.submitter_id | data_batch
o studies.submitter_id Sub_1 23 N I H_08262025
sub_456 NSRR_08272025

Parent_props: Get props from upper nodes

ETL - Creating a Mapping - Nested Props

GEN

DATA COMMONS

Program —— Project —

Subject

Treatment Events Demographics Sample

A

DataFile -
Image

DataFile -
‘Assay

Subject

e submitter_id
o studies.submitter_id

\

Sample

Submitter_id
sample_id
collection_date
sample_type
subjects.submitter_id

Data File - Image

submitter_id
file_size

.
.
. 5sum

e Samples.submitter_id

20

mappings:

name: my-data-commons_subject
doc_type: subject
type: aggregator
root: subject
props:
- name: submitter_id
nested_props:
- name: subject_samples
path: sample
props:

- name: submitter_id
collection_date
sample_type
nested_props:

- name: sample_data-file
path: data_file_image

- name:
= nName:

props:
- name: file_size
- name: md5sum

Nested_props: Get props from multiple lower nodes

Example Index:
Subject: [

bmitter id":
amples™: [
{"submitter id":

"collection date"
ample type": "4
ata files":

{"file size": "100 MB"
"md5sum": "e33ngkdfO0

{"file size": "1
"md5sum": "
]

by

{"submitter id":
"collection date":
ample type":

"imaging",

ata files [
{"file size": "1.5C
"md5sum": "13hg

{"file size":

"md5sum": "31612kjfga

amples™: [
{"submitter id":
"collection date":
"sample type":
"data fil
{"file
"md5sum" :
{"file size":
"md5sum": "sfghsfx

]

by
{"submitter id":
"collection date":
"sample type":
"data fil

Nested
Indices

ETL - Mapping - Nested Props (skipping nodes)

GEN

DATA COMMONS

Progam —— Project

mappings:
- name: my-data-commons_subject

X Subject:
doc_type: subject {
type: aggregator
root: subject

Subject

props:
Sample - name: submitter_id ;
nested_props: }

{

Data File -
Image

Data File -
Assay

- name: subject_samples
path: sample.data_file_image

props:
H i :]
Subject - name: file_size }
e submitter_id
o studies.submitter_id 13 - name: md5sum

}
{

Data File - Image
e submitter_id
o file_size
. 5sum
e Samples.submitter_id

Nested_props: Get props from multiple lower nodes

Example Index:

"submitter id":

"submitter id":

Nested
Indices

[

"subject
{"file s
"md5sum" :
{"file size":
"md5sum": "9fac

’
"subject samples": [
{"file size":
"md5sum": "13hc
{"file size":
"md5sum" :

"31612kjfga

"subject
{"file s
"md5sum"
{"file size":
"md5sum": "sfghsfvs

]

’
"subject
{"file
"md5sum"
{"file size":
"md5sum": "arfg4

]

ETL - Mapping - Aggregated Props

DATA COMMONS

Program —— Project -
\\\\ ame: my-data-commons_subject

Study

subject
type: aggregator
go subject

Subject

G —

Treatment Events Demographics Sample

subject_samples
Image nssay path: sample

Data File - Data File -

Subject

e submitter_id
e studies.submitter_id

collection_date
sample_type

a ted_pr
\\-~—__—————__—_—“‘~\\ : sample_count

Sample samples
o submitter id fn: count

e sample_id
® collection_date
e sample_type

Example Index:

Subject.submitter_id collection_date sample_type sample_count
sub_123 08/26/2025 assay 3

08/26/2025 imaging 3

09/01/2025 assay 3
sub_456 07/26/2024 imaging 3

08/23/2025 imaging 3

Aggregated_props: Add statistics into indices

08/23/2025 assay 3

ETL - Mapping - Injection EN

DATA COMMONS

Program —— Project \

oy me: data-file_subject
c_type: data_file
et type: collector
P —_— category: data_file
Treatment Events Demographics Sample
submitter_id
Data File - Data File - (: : - —
Image Assay injectln i]u{) rops:

set

) _subject_id
Subject src: subject_id

® submitter_id
® studies.submitter_id

Example Index:

Data_files_image.submitter_id _subject_id Data_files_assay.submitter_id _subject_id
. . image_123 subject_123 assay_123 subject_567
Data File - Image Data File - Assay imags 234 et 123 assay 234 Subject 567
. sub_mitte_r,id . sub_mitte_r,id image._ 345 subject 123 assay_345 subject_567
o project_id o project_id - - -
image_456 subject_345 assay_456 subject_789
image_567 subject_345 assay_567 subject_789
image_678 subject_345 assay_678 subject_789

Injecting_props: Objects from nodes are injected into an index made up of nodes from that category

ETL - Mapping - Collector default functions GEN

DATA COMMONS

In collectors, the default function is set

e fn:set-reporting all the unique values for records for that property

ETL - Mapping - Joining Props (Combination) GEN

DATA COMMONS

Program —— Project

Injected index Joining indices

sample_for_join

subject
Subject
- ic aggregator
//// \
-~ ™ type: collector events
Treatment Events. Demographics, Sample x
category: data_file
Data File - Data File -
Image Assay
ps
,,,,,,, data-file_study
Study =

e Submitter_id
e Data_batch

n_on: study_id

set
study_id study_id
Events study_id
e submitter_id
e date
: ;ﬁﬁect&submltteud EXa m p le I n d eX.
events.submitter_id study_id data_file.submitter_id
event_1 study_1 wb54yt4byw5b3
Data Flle . Image Data Flle - Assay event_2 study_1 sasdffcvsfdgsrg
. sub_mitte_r,id . sub_mitte_r,id
O s O el event_3 study_1 gd4qgbg5gw545s
event_1 study_2 ds43w5bgb45try
event_2 study_2 aqg4bgbtgnbgdwtd

Joining_props: Join properties between indices [“e=is sty 2 eSS

ETL - Mapping - Putting it all together GEN

Goal: Create a File Manifest

We want a search to be able to capture
what data files are present for studies,
subjects and demographics

Steps:

1. Create an Aggregator index
connecting Subject with
Demographics and Sample
(nested)

2. Create an collector (injected) index
with the Data File nodes

3. Jointhefile index to the
aggregator to build a file manifest*

DATA COMMONS

Treatment Events ’ DDDDDDDDDDDD Sample

* File manifests must have (at least) the object_id of the
files to be useful. So, remember to add object_id to
the joining_props of the aggregator indices

ETL - Mapping - Putting it all together - Subject File Manifest GEN

DATA COMMONS

demographic
demographic

Program —— Project
sample
" Study
sample
3 Subject 1 3
.
_subject_id //%v
object_id /
object Treatment Events Demographics Sample
: set
. AN
file_collector / \
2. 2
Data File - Data File -

None Image Assay

_subject_id
id

ETL - Mapping - Putting it all together (Part 2) GEN

DATA COMMONS

We showed you how the MIDRC exploration page has tabs created from
indices generated by ETL

EMIDRC

Exploration

. . . . @ Explorer Fili
Cases Annotations Measurements Imaging Studies Data Files

Filters Login to download table 3 Login to download file manifest for cases (1.07m) ¥

Annotations

Procedures Conditions Cases

COVID Tests Medications 84 0 16
)

Demographics Imaging Studies
Collapse all
Showing 1 - 20 of 84,016 cases ~ Show Empty Columns

v Case D

s /:li;.ndpomf: elasticsearch
Putting it all together (Part 2)

elasticsearch etWMapping:

mappings:

Here is an abridged version of the
midrc_case index ETL mapping.

Calledmidrc_caseinES
Called case in Guppy

This is an aggregator with the
case node as a root.

This index includes:

Props
Aggregated_props
Parent_props
Nested_props
Joining_props

aggregated props

parent: props
nested props

joining. props

root: case type: aggregator

midrc_case
pe: case

- name: midrc_case
doc_type: case

aggregator

rejeetiiy root: case

submitter_id props:

258 - name: project_id
>: submitter_id
- name: sex

race
age_at_index Lo ¢ |
ame: index_event
. (etc)

—= hame: race

- ing_st
imaging_studies

- name: age_at_index
- name: index_event
- ... (etc)

aggregated_props:

n: count
- name: _ct_series_file_count
path: imaging_studies.ct_series_files
1: count
- ... (etc)

— nama:r ima

- path: datasets([dataset_submitter_id:submitter_id,license,data_url_doi,data_contributor]

case_annotations
annotations

- name: annotation_method

- name: annotator_id
imaging_study_annotations
naging_studies.annotations

21 airspace_disease_grading
name: class_covid19_pneumonia
: annotation_name

¢ midrc_mRALE_score

: annotation_method

: annotator_id

ame: instance_uids

= : data_file
on: _case_id

- name: object_id
c: object_id
n: set

e: data_format

c: data_format

set
- name: data_type
c: data_type

n: set

- name: data_category

ETL - Mapping - Putting it all together (Part 2) GEN

DATA COMMONS

portal:
gitops:
json: |
"explorerConfig": [-
{
"tabTitle": "Cases",

Sneak peek at how ETL mapping
connects to Exploration page

guppy-: “"charts": {},
"filters": {
... (etc) dtabsi:N]
indices: { "guppyConfig": {
L titles D emogiraphicsi) "dataType": "case",

- index: midrc_case wsearchFields": [

"submitter_id"

1,

"nodeCountTitle": "Cases",
"fileCountField": "data_file_count",
"fieldMapping": [

type: case
— 1index: midrc_measurement

"fields": [{
type: measurement sex, s fiielldi:Bprojectidss
: 5 : L Eaces’ "name": "Project ID"
- index: midrc_annotation nethnicity", 1,
type: annotation “age_at_index", LR
‘) . "index_event", field = submitte riid,
— index: midrc_data_file nziph, "name": "Case ID"
type: data file "covid19_positive", H
, R) "project_id" {
— index: mid rc_imag lng_StUdy "field": "imaging_studies.age_at_imaging",
A s ; tud "name": "Age at Imaging"
ype: 1magling_stuay },
eel(etc)

"title": "Imaaina Studies".

Questions? GEN

DATA COMMONS

Questions? (before our ETL Troubleshooting part of the presentation)

Reminders:
e Slides and the recording will be available as a resource

e Code snippets of examples shown here are available on GitHub

e Gen3-gitops has the ETL mappings for all Gen3 commons supported by CTDS

o Atthe end of this presentation, there is a slide that specifically links to ETL
mapping, Guppy values.yaml, explorerConfig, guppyConfig, and exploration
page for 2 different open-access Gen3 data commons

e Additional documentation is coming soon

https://github.com/uc-cdis/gen3.org/tree/master/content/community/events/Gen3%20Forum%20September%202025%20-%20ETL
https://github.com/uc-cdis/gen3-gitops

GEN

DATA COMMONS

Troubleshooting your ETL"

* And processes happening between your ETL and
the data showing up on your Exploration page

Troubleshooting Part 1: Sanity Check GEN

DATA COMMONS

Did you deploy the new ETL mapping?
Did you make sure to run the ETL after deploying the new ETL mapping?
Did you re-roll Guppy after your ETL run?

If so — were there any Guppy errors at startup? Check both your Guppy and
Portal/FEF logs to see if there are any errors (eg, new portal pod may not be
deployed because of a simple JSON parsing error).

Did you update the Portal/FEF explorer config to make sure it is aligned with any
new data in ES and accessed by Guppy?

Special thanks to Joshua Harris from Australian BioCommons for developing a
substantial part of this troubleshooting guide

Troubleshooting Part 2: Check ETL and ES GEN

DATA COMMONS

Check the ETL log (assuming you are using Tube for ETL)

e Will explicitly say that the ETL succeeded, even if there are lots of other warnings
e TochecktheETL log:

kubectl logs <etl pod name> -c tube -f

Special thanks to Joshua Harris from Australian BioCommons for developing a
substantial part of this troubleshooting guide

Troubleshooting Part 2: Check ETL and ES (con’t) GEN

DATA COMMONS

Log on to the ES pod and check the data there after running ETL

e TologontoyourES pod:
kubectl exec -it <es proxy pod> -- sh
e Tocheck whatindices are presentin your ES:
o Intwo terminals, do the following:
m portforward ES service:
kubectl port-forward svc/elasticsearch 9200:9200
m SeedatainallindicesinES:
curl -X GET http://localhost:9200/_cat/indices
m Seedatain aspecificindex:
curl -X GET http://localhost:9200/<index name>

Special thanks to Joshua Harris from Australian BioCommons for developing a
substantial part of this troubleshooting guide

Troubleshooting Part 2: Check ETL and ES (con’t) GEN

DATA COMMONS

If your dataisinES:

If your datais in ES - you know ETL is working and data is being created in ES

If your data is NOT in ES:

Your ETL has a problem. The ETL log should provide a clue about what’s wrong - you
can tell from the logging before it failed where in the ETL mapping it had the failure.

e Examineyour ETL mapping; check if there's anything that could be a typo or an
incorrect prop name or path.

e Look at your data in Sheepdog. Particularly look for “special characters” (backslash
and non-ASClI characters), especially if it’s a particular data column missing.

e Confirm with Peregrine queries that the path to the prop you included in the mapping
is a valid path.

Troubleshooting Part 3: Check Guppy GEN

DATA COMMONS

Check the data can be queried by Guppy - Frontend

Once you know the data is in ES - restart Guppy, and check that Guppy can pull data from
ES. This will help you determine whether the data in ES is queryable by Guppy from the

/graphql API.

e You can work from the query page on the front end and submit your queries

8 010101
[;\—Z i 101010
— e 010101

Discovery Dictionary Exploration Notebook Browser Profile

Special thanks to Joshua Harris from Australian BioCommons for developing a
substantial part of this troubleshooting guide

Troubleshooting Part 3: Check Guppy (con’t) GEN

DATA COMMONS

View the Guppy Schema - Frontend

Looking at the Guppy schema could help you see misalignments between ETL/ES and
Guppy configuration. There are 2 ways you can view the Guppy schema from the frontend.

e Through Docs: On the Query page, click "Docs" on the upper right side of the
graphiQL interface, then click "query" to view the indices available. Click on an

index to view the fields available for each index. < Query CaseX
X
< Schema Query ——
Documentation Explorer X
|Search Query... | _case_id:
Switch to Graph Model Search Schema... | No Description _cr_series_file_count: Flo
. FIELDS
A Grath!_ schema prc?V|des a root type _ct_series_file_count: Flo
for each kind of operation. case(offset: Int, first: Int, filter: g
< Docs ROOT TYPES . e _dx_series_file_count: é
sort: , accessibility:
query: e = all, format: Format = json): []0 _imaging_studies_count: Flc
measurement(offset: Int, first: Int, —mr_series_file_count:
filter: JSON, sort: JSON, accessibility: age_at_imaging: Flo

Troubleshooting Part 3: Check Guppy (con’t)

GEN

DATA COMMONS

View the Guppy Schema - Frontend

Through Query page: You can also get the guppy schema using a "mapping"
guppy query on the Query page (flat model) with this query :

{ _mapping { <guppy_index> }}

GraphiQL } Prettify Merge Copy History Introspect < Docs
{ _mapping { case }} {
"data"; {
"_mapping": {
"case": [
"_case_id",

"_cr_series_file_count",
"_ct_series_file_count",
"_dx_series_file_count",
"_imaging_studies_count",
"_mr_series_file_count",
"age_at_imaging",
"age_at_index",

1 ace disease arading

https://www.google.com/url?q=https://github.com/uc-cdis/PX-US-KB/blob/7995b640c1911c90a6ffe923ce4a9fbb3ba1961c/Gen3/guppy/guppy_queries.py%23L235&sa=D&source=editors&ust=1756500065005999&usg=AOvVaw1u48an27tza_fI9R86yjuY
https://www.google.com/url?q=https://github.com/uc-cdis/PX-US-KB/blob/7995b640c1911c90a6ffe923ce4a9fbb3ba1961c/Gen3/guppy/guppy_queries.py%23L235&sa=D&source=editors&ust=1756500065005999&usg=AOvVaw1u48an27tza_fI9R86yjuY

Troubleshooting Part 3: Check Guppy (con’t) GEN

DATA COMMONS

Check the data can be queried by Guppy (Backend)

e To logonto your Guppy pod:
kubectl exec -it <guppy pod> -- sh
e Use curl to create a graphql query. For example, here is a sample Guppy
query (h/t Joshua Harris)
curl -X POST https://<commons api>/guppy/araphal \
-H "Content-Type: application/json" \

-H "Authorization: Bearer $TOKEN" \
-d '{

"query": "query { subject(first: 10, accessibility:
accessible) { project_id submitter_id timepoints
{ baseline_timepoint } } }*

}I

Special thanks to Joshua Harris from Australian BioCommons for developing a
substantial part of this troubleshooting guide

Troubleshooting Part 3: Check Guppy (con’t) GEN

DATA COMMONS

If the data cannot be queried by Guppy:

Guppy logs should be helpful here.

Check your Guppy config. Make sure the index names (type) in the Guppy config
match up, with no typos, to the doc_type fields in the ETL mapping config.
Check the JSON structure for problems. (Remember to re-roll Guppy after any
config changes before testing if it fixed the problem).

Check your Guppy config for appropriate tier_access_level

Special thanks to Joshua Harris from Australian BioCommons for developing a
substantial part of this troubleshooting guide

Troubleshooting Part 4: Check Front End GEN

DATA COMMONS

Check the front end 1 © =€

Q
O Name Window... S Print... P
. 7 Customize Chrome @ Search with Google Lens
1. Go to your Exploration page and then open i b
Developer Tools p— b o S 3
f@ Task Manager =] >

MoreToiI,c
2. Click on the Network tab SR % k

3. Onthe Exploration page, select the filter of
|nterest. i< [0 Elements Console Sources Networik»

N
@ @ Y Q ([rpreservelog [J Disable cac No throt
AR

4. Inthe dev tools window, you should see

/graphqgl APl calls appearinthelist. Look at = o o o 0 o & 7 %
the status - 200 indicates successful call, A St e S
anything else indicates trouble. o =N
5. Click on one of the grapha call m W X omme e

Troubleshooting Part 4: Check Front End (con’t) GEN

DATA COMMONS

Look at the index the query is calling

5. Click on the Payload tab (can also click “View Source” - see box below)

6. Now, you can see the query that is being used. Check the index and make sure
it’s what you expect it to be.

7. Check the other graphql queries, as well.

“View source” will let you see/copy the
exact query text being sent to Guppy. You
use this to troubleshoot by using the Gen3
Name X Headers Paylc% preview Red SDK to send thatin a Gen3Query function

Ui} graphd v Request Payload View source (g raphq 1—que I'Y())
{i» graphql .

v {pn-}

query: "query ($filter: JSON,) {\n case (accessibility: all, offset: @, first: 20, ,
» variables: {filter: {AND: [{IN: {sex: ["Female", "Male"1}}1}}

4> graphql

collect

Troubleshooting: Final thoughts GEN

DATA COMMONS

Look at CTDS open-source examples

Gen3-gitops is open access now. When in doubt, look through the etlConfig
sections in the values.yaml’s for any commons run by CTDS.

MIDRC Gen3 Data Hub
MIDRC ETL mapping G3DH ETL mabbing

MIDRC Guppy indices G3DH Guppy indices
MIDRC Explorer config G3DH Explorer config
MIDRC Guppy config G3DH Guppy config
MIDRC Exploration page G3DH Exploration page

https://github.com/uc-cdis/gen3-gitops/tree/master
https://github.com/uc-cdis/gen3-gitops/blob/abddc4bab9ca61317515f1d716326d1a37134cbf/midrcprod/data.midrc.org/values/values.yaml#L59
https://github.com/uc-cdis/gen3-gitops/blob/abddc4bab9ca61317515f1d716326d1a37134cbf/midrcprod/data.midrc.org/values/values.yaml#L538-L548
https://github.com/uc-cdis/gen3-gitops/blob/d3459a6e4a64f85b6820889c54f6d45cb3b2ca89/midrcprod/data.midrc.org/values/values.yaml#L1422
https://github.com/uc-cdis/gen3-gitops/blob/d3459a6e4a64f85b6820889c54f6d45cb3b2ca89/midrcprod/data.midrc.org/values/values.yaml#L1631
https://data.midrc.org/explorer
https://github.com/uc-cdis/gen3-gitops/blob/abddc4bab9ca61317515f1d716326d1a37134cbf/unfunded/gen3.datacommons.io/values/etl.yaml#L12
https://github.com/uc-cdis/gen3-gitops/blob/abddc4bab9ca61317515f1d716326d1a37134cbf/unfunded/gen3.datacommons.io/values/guppy.yaml#L12
https://github.com/uc-cdis/gen3-gitops/blob/abddc4bab9ca61317515f1d716326d1a37134cbf/unfunded/gen3.datacommons.io/values/portal.yaml#L388
https://github.com/uc-cdis/gen3-gitops/blob/abddc4bab9ca61317515f1d716326d1a37134cbf/unfunded/gen3.datacommons.io/values/portal.yaml#L435
https://gen3.datacommons.io/explorer

Acknowledgements

GEN

e Speakers

(@)

(@)

(@)

Michael Fitzsimons - Center for Translational Data Science, University of Chicago
Dan Biber - Center for Translational Data Science, University of Chicago
Sara Volk de Garcia - Center for Translational Data Science, University of Chicago

e Gen3 Forum Steering Committee

(@)

o O O O

Robert Grossman - Center for Translational Data Science, University of Chicago
Steven Manos - Australian BioCommons

Claire Rye - New Zealand eScience Infrastructure

Plamen Martinov - Open Commons Consortium

Michael Fitzsimons - Center for Translational Data Science, University of Chicago

DATA COMMONS

Architecture of ETL GEN

DATA COMMONS

dictionary etl-mapping

Postgresql

SQO—OP mem-writer

Avro reader es-writer

Haoop

Spark cluster

